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ABSTRACT

Machine learning (ML) based software is increasingly being de-
ployed in a myriad of socio-technical systems, such as drugmonitor-
ing, loan lending, and predictive policing. Although not commonly
considered safety-critical, these systems have a potential to cause
serious, long-lasting harm to users and the environment due to their
close proximity and e�ect on the society. One type of emerging
problem in these systems is unintended side e�ects from a feedback

loop; the decision of ML-based system induces certain changes in
the environment, which, in turn, generates observations that are
fed back into the system for further decision-making. When this
cyclic interaction between the system and the environment repeats
over time, its e�ect may be ampli�ed and ultimately result in an
undesirable. In this position paper, we bring attention to the safety
risks that are introduced by feedback loops in ML-based systems,
and the challenges of identifying and addressing them. In particular,
due to their gradual and long-term impact, we argue that feedback
loops are di�cult to detect and diagnose using existing techniques
in software engineering. We propose a set of research problems
in modeling, analyzing, and testing ML-based systems to identify,
monitor, and mitigate the e�ects of an undesirable feedback loop.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement; • Computing methodologies→Machine learning.
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1 INTRODUCTION

Software with machine learning (ML) components is widely being
deployed as part of socio-technical systems, such as drug monitor-
ing, loan lending, and predictive policing. Although not tradition-
ally considered safety-critical, these systems are posing increasing
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safety risks to our society, as they have a potential to cause di-
rect or indirect harm in long-term. For example, a buggy or biased
ML-based medical diagnosis system may deny timely access to
healthcare for certain population, causing serious physical harm.

One of the emerging problems inML-based systems is unintended
side e�ects from feedback loops [5, 9, 27]. A feedback loop occurs
when a system makes a decision that induces certain changes in
the environment, which, in turn, in�uences the system’s future
behaviors through its input. Not all feedback loops are undesirable;
for example, in control engineering [6, 13], feedback loops play a
crucial role by providing an explicit mechanism to monitor and
regulate the system’s output to a desirable level. However, certain
self-reinforcing feedback loops, where an increase (decrease) in the
input results in an increase (decrease) in the output, can have an
undesirable e�ect if left uncontrolled over time.

For example, consider a predictive policing system [20] that uses
ML-based predictions about crime rates (based on historical data in
di�erent neighborhoods) to determine allocation of police patrol.
Suppose that a high amount of patrol is assigned to a particular
neighborhood based on the initial ML prediction; since more police
are present, it is likely to lead to an increase in the number of
arrests in that neighborhood; this, in turn, generates more arrest
records to be fed back into the system for further decision making
or model retraining. When this pattern of interaction repeats over
time, that neighborhood may become unfairly perceived as a crime
hotspot, while other neighborhoods that could actually bene�t
from increased patrol remain unattended [10]. There are other well-
known examples of harmful side e�ects caused by self-reinforcing
feedback loops in ML-based systems [25].

Safety risks due to feedback loops have been studied extensively
in system engineering [6], control applications [13], and social
sciences [8] but have received relatively little attention in software
engineering. Recent works by the ML community on distribution
shifts [19, 26] focus almost exclusively on model accuracy, and do
not consider long-term e�ect on system-level properties such as
safety or fairness. We believe that software engineers share the
responsibility to explicitly account for the possibility of feedback
loops in the system being developed, consider potential harmful
e�ects, and build in mechanisms to detect and mitigate those e�ects.

However, these are challenging tasks to carry out using the ex-
isting tools and techniques that are available to software engineers.
The impact of a feedback loop is often gradual and may not be
evident until the system has been deployed for a long period, but
most techniques in software testing and veri�cation are designed to
reason about the system as it is, not about how the system and the
environment might evolve. Even domain experts may not be aware
of potential harms that may emerge, so new methods for require-
ments elicitation, speci�cation, and validation for feedback-driven
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Figure 1: ML-based risk scoring for opioid overdose can lead to several safety hazards in the long run

systems are needed. Furthermore, monitoring and intervening the
system (e.g., through retraining or updating decision-making policy)
to mitigate the e�ects of an ongoing feedback loop is an important
step that could bene�t from improved developer tools.

In this position paper, we aim to bring attention to emerging
safety risks that are introduced by feedback loops in an ML-based
system, and the challenges of identifying and addressing their neg-
ative impact throughout the software development life-cycle. We
begin by introducing an ML-based drug monitoring system as an
example and potential harmful e�ects that can arise from a feed-
back loop. We then propose a conceptual framework for modeling
and analyzing feedback loops, and conclude by proposing a set of
research challenges and opportunities.

2 FEEDBACK LOOPS IN ML: AN EXAMPLE

In the United States, prescription opioid abuse is the leading cause
of death for adults under the age of 50, even more than car crashes
or gun violence [12, 23]. Common opioids such as methadone, mor-
phine, fentanyl, etc. are frequently used for pain management that
can result in overreliance and addiction, which is called Opioid
Use Disorder (OUD). A Study showed that 79.9% of abusers had an
opioid prescription before their �rst abuse [12]. With the growing
number of OUD, the US Department of Health and Human Ser-
vices declared prescription opioid drug abuse an ‘epidemic’ in 2015.
Recent data show a worsening situation with an estimate of over
100,000 annual deaths caused by OUD for the �rst time in 2021 [1].

Despite extensive research on the prevalence and causes of OUD,
an appropriate method of opioid prescription for preventing misuse,
abuse or addiction is not well understood because of variations in
medical conditions, age, and policies. To reduce overdose, a pre-
dictive surveillance platform called Prescription Drug Monitoring
Program (PDMP) is mandated in each state, which measures an
overdose risk score for opioid prescription. NarxCare is widely-used
ML-based software in PDMP that produces a numeric risk score
(000-999; a higher score implies a higher risk) for doctors and phar-
macists [2]. Potential hazards brought by the PDMP risk scoring
system are shown in Figure 1. The ML algorithm is trained using
PDMP data of patients, including features such as past opioid usage,
number of pharmacies visited, number of prescribers, overlap from
di�erent prescribers, etc., [3]. The score can directly impact doctors’
evaluation of opioid prescriptions and pharmacists’ decisions to

allow medicine purchase. Their decision may induce changes in the
patient behavior, which, in turn, result in new observations being
generated and fed back into the system.

While the actual goal of the tool is to curtail opioid overdose,
the risk scores could be interpreted in various ways and result in
unwarranted denial of service from the healthcare providers [4].
The problem �rstly is the misguided usage of the features like the
number of prescriptions, which can �ag chronic pain and cancer
patients as high-risk. Second, the success of the tool is assessed
based on the decrease in overdose deaths; however, while this may
reduce overall OUD cases, numerous legitimate users can su�er
from physical debilitation, untreated pain, social and mental dam-
age, or be coerced into illegitimate activities [17]. Here, we describe
an instance of a feedback loop that might result in a safety hazard.

ML Software

Patient
(with history) Doctor Less opioid prescription

than needed

Higher
pain

Try out other doctors
or drug

Higher risk
score

Refused treatment,
injury, death

Figure 2: A feedback loop reinforcing risky patient behavior
Example: Feedback loop in PDMP. The genetic variance in meta-

bolic rates for people can vary up to 17-fold. Therefore, the risk
score is suggested to be used at the user’s (e.g., doctor) discretion.
Depending on the doctor’s decision, some patients may receive
a lesser amount of opioids than needed, which, in turn, is likely
to cause higher pain. These patients can go to another doctor, try
other drugs in pharmacies, or exhibit other unusual behavior, e.g.,
identity theft, cash payments, etc. As described by NarxCare, any of
these behaviors can in�uence the ML software to increase the risk
score of the patients in their subsequent doctor or pharmacy visits.
Thus, an increasing risk score may eventually cause the patient to
be ‘locked-in’ by the provider and result in untreated pain. Figure 2
depicts the speci�c feedback loop created by the PDMP system.

3 MODELING AND REASONING ABOUT

FEEDBACK LOOPS

To mitigate potential safety hazards due to feedback loops in an
ML-based system, developers may wish to ask questions such as:
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Figure 3: A framework for ML-driven feedback loops

Are there possible self-reinforcing feedback loops in this system?
What interactions between the system and environment could give
rise to such feedback? What are some harmful e�ects? What type
of intervention is needed to mitigate the negative impacts? To
support approaches for systematically answering these questions,
we propose a conceptual framework for capturing interactions
between the system and the environment, and the feedback loop.

Framework: Figure 3 illustrates the proposed framework. The
ML model " is trained using an initial set of training data that
is gathered from the environment. Given some input (8) to the
system (e.g., patients’ information in PDMP)," performs inference
to generate a prediction output (e.g., risk score). This prediction
(>) is then passed onto a decision-making entity � , which makes a
further decision (3) based on a policy, i.e., doctors or pharmacies
that use the risk score to determine the prescription amount.

The environment is modeled as an entity that is associated with
some state @ ∈ & , which captures relevant properties of a popula-
tion at a particular point in time. In the PDMP example, each state
@ may itself be a complex entity that captures the properties of
patients (e.g., age, gender, opioid usage, pharmacy visits). When
the system makes a decision, the environment transitions from one
state to another, during which the properties of some subset of the
population may change, depending on how the system’s decision in-
�uences the subset. For example, in PDMP, if the system decides to
deny medication to a group of patients, those patients may choose
to visit another pharmacy; this behavior would then be re�ected
through a change in their pharmacy visit records. In our framework,
we model these changes as a transition function )A : & × � → & ,
where the environment moves from @ to @′ = )A (@, 3) for given sys-
tem decision31. As the systemmakes a series of decisions ⟨30, 31, ...⟩
over time, the environment also evolves through a corresponding
sequence of states ⟨@0, @1, ...⟩, where @= = )A (@=−1, 3=−1).

As the environment evolves, the ML model" is again fed input
data that is gathered by sampling the population. Occasionally,
some part of this data may be set aside as new training data for
retraining the model. In our framework, a projection function %A :

& → � is used to determine the observable parts of the environment
state @ that" uses for prediction (i.e., the set of input features).

Analysis: We envision that this framework could be used to
support both informal and formal reasoning about feedback loops
in ML-based systems. Having identi�ed the major elements of the
framework (i.e.," , � ,& ,)A , and %A ) for a speci�c ML-based system,
one could simulate the framework under di�erent initial states (i.e.,
@0 ∈ &) or transition functions ()A ) for some number of steps, to
identify possible feedback loops and gain insights about how system
evolves with a series of interactions, i.e., oscillating or converging
feedback loop in mid- or long-term.

1For simplicity, )A here is assumed to be a deterministic function. In general, a sto-
chastic model of the environment is likely to be more suitable.

To understand potential harmful e�ects of a feedback loop, one
could monitor how particular properties of the environment change
over time. For example, in PDMP, we could de�ne a variable that
corresponds to the percentage of the population from a certain
neighborhood that is denied a prescription; if this variable gradually
increases and exceeds a threshold, the subset of the population
would be at safety risk as a result of a feedback loop.

If the elements of the framework can be encoded as formal arti-
facts, it may be possible to (semi-)automate the simulation-based
analysis. For instance, " itself could be substituted by a real ML
model; & could be represented as a set of records that encode rel-
evant properties of a population; and )A could be de�ned using a
set of manually-devised, domain-speci�c rules or possibly learned
from real-world data. Then, the entire framework could be simu-
lated to explore a large number of possible system traces and detect
harmful feedback loops. Such simulation might not always gener-
ate accurate evolution of system if impactful exogenous variables
(e.g., transition rules) are not captured. However, even with the
models of & or )A that are incomplete or rough approximation of
the real-world entities, such analysis can reveal valuable insights
as it is often done in �elds such as econometrics, social sciences,
and system dynamics [22, 29].

4 RESEARCH CHALLENGES & DIRECTIONS

Impact analysis for safety: Retrospective analyses and repair,
after a safety violation has already occurred, can be too costly.
We advocate proactive analysis (such as simulation) to understand
the e�ects of possible feedback loops. Even if the environment
model is an approximation of the real world, such analyses could
provide useful insights about safety. One challenge with simulation
is a large (and potentially in�nite) number of simulation traces to
explore and evaluate. In each step of the simulation, uncertainties
in the environment model and the dynamic behavior of agents can
yield many di�erent choices for the system trace to evolve. A naive
random or exhaustive search is likely to be impractical, and further
research is needed on techniques for e�ciently exploring a diverse
set of traces within a limited amount of analysis resources.

ML system design and repair strategies:We advocate consid-
ering feedback loops as a �rst-class concept in ML component de-
sign. When selecting a feature or optimization function, we should
evaluate how predictions may in�uence the environment. For ex-
ample, is it appropriate to optimize the ML model for lowering
the number of OUD cases in a given area? It has been shown that
an ML agent may exploit reward hacking to maximize its objec-
tive by gradually limiting the access of opioids to chronic patients
or individuals from speci�c neighborhoods [5]. The NarxCare ML
model selects 12 features from 70 PDMP variables [3], which should
be evaluated for their possible contributions to a feedback loop.
Furthermore, continuous e�orts to explore unobserved parts of the
environment through data collection and simulation would be help-
ful. In addition, recent ML approaches such as meta-learning [24]
and population-based training [16] could be adopted to �nd hyper-
parameters that minimize the e�ect of a harmful feedback loop.

Safety requirements elicitation for feedback loops: In a
complex system with multiple stakeholders (like the one shown in
Figure 1), there are often con�icting requirements. In PDMP, while
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one important requirement is to provide an appropriate amount of
opioids, another state-mandated regulation may impose a restric-
tion on the maximum opioid prescription allowed for each doctor. A
requirements elicitation and negotiation process that explicitly con-
siders trade-o�s between them is a crucial step in developing safe
ML systems. Additionally, requirements on feedback loops would
likely be de�ned over how the system evolves over time, instead
over a static snapshot. Thus, new metrics and dynamic tolerance
limits for feedback loops are needed to guide the safety evaluation
of system designs and policies. Existing modeling approaches like
problem frames [15], feedback modeling [27], community-based
system dynamics (CBSD) [21], and Leveson’s System Theoretic
Process Analysis (STPA) [17] would be good starting points.

Causal reasoning: Identifying the root cause(s) of a feedback
loop is challenging given a rich set of system and environmental
characteristics and their possible interactions. Di�erent factors such
as the properties of the ML system " (e.g., retraining frequency,
decision threshold), policies � (e.g., elders are prioritized for vac-
cines in certain area [11]), intensity of transitions )A (e.g., amount
of opioid adjustment) may contribute to the rise of a feedback loop.
We envision that a simulation framework (like the one that we have
proposed) could be used to enable a data-driven analysis of highly
con�gurable systems and identify possible causal relationships be-
tween these factors. In particular, the analysis could be used to
infer causal loop diagrams [18] or stock-and-�ow diagrams [17]
to inform the e�ect of particular con�guration options and enable
counterfactual reasoning. Challenges remain in modeling unob-
served variables and missing causal links, which could be mitigated
by engaging with domain experts and stakeholders.

Adaptive policies and intervention: An adaptive approach
that dynamically adjusts the behavior of the system to maintain a
desired level of fairness is another promising direction [11]. Meth-
ods and tools from self-adaptive systems could be leveraged [28].
Di�erent adaptation tactics, such as model retraining and replace-
ment, selectively forgetting certain inputs, amending outcomes in
post-processing, and coping with covariate/concept drift, could
help mitigate the e�ect of a feedback loop [7]. In addition, such
adaptive approaches should be coupled with a runtime monitor
that continuously analyzes the system behavior and detect the rise
of a possible feedback loop (similar to monitors proposed in [14])

5 CONCLUSION

With the ever-increasing autonomy and data-driven world, ML-
based software systems are in�uencing lives and society more than
ever. In this paper, we bring attention to undesirable but implicit
feedback loops in ML-based systems that can cause di�cult-to-
reverse, harmful consequences on safety. Commonly induced as side
e�ects of opaque ML processes, positive feedback loops have been
overlooked in software design and analysis. We’ve illustrated such
feedback loops with a real-world example, that require immediate
attention to avoid long-term safety impact on our society. We’ve
proposed a simulation-based framework to identify and analyze the
feedback loops in socio-technical systems. We’ve further outlined
the associated research challenges and future directions.
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